We typically spend more than 2 hours each night dreaming. Scientists don’t know much about how or why we dream.
Sigmund Freud, who greatly influenced the field of psychology, believed dreaming was a “safety valve” for unconscious desires. Only after 1953, when researchers first described REM in sleeping infants, did scientists begin to carefully study sleep and dreaming.
They soon realized that the strange, illogical experiences we call dreams almost always occur during REM sleep. While most mammals and birds show signs of REM sleep, reptiles and other cold-blooded animals do not.
REM sleep begins with signals from an area at the base of the brain called the pons. These signals travel to a brain region called the thalamus, which relays them to the cerebral cortex — the outer layer of the brain that is responsible for learning, thinking, and organizing information.
The pons also sends signals that shut off neurons in the spinal cord, causing temporary paralysis of the limb muscles. If something interferes with this paralysis, people will begin to physically “act out” their dreams — a rare, dangerous problem called REM sleep behavior disorder.
A person dreaming about a ball game, for example, may run headlong into furniture or blindly strike someone sleeping nearby while trying to catch a ball in the dream.
REM sleep stimulates the brain regions used in learning. This may be important for normal brain development during infancy, which would explain why infants spend much more time in REM sleep than adults.
Like deep sleep, REM sleep is associated with increased production of proteins. One study found that REM sleep affects learning of certain mental skills. People taught a skill and then deprived of non-REM sleep could recall what they had learned after sleeping, while people deprived of REM sleep could not.
Some scientists believe dreams are the cortex’ss attempt to find meaning in the random signals that it receives during REM sleep. The cortex is the part of the brain that interprets and organizes information from the environment during consciousness. It may be that, given random signals from the pons during REM sleep, the cortex tries to interpret these signals as well, creating a “story” out of fragmented brain activity.